PHZ 5156, Computational Physics Homework 2 Solution September 13, 2005

Problem 1 (Garcia 1.23)

- (a) $v = 2\pi r/T$ with $r = R\cos 40$ and T = 24*3600 s gives $v = 3.553076903 \times 10^2$ m/s.
- (b) $a = v^2/r = 2.583870440 \times 10^{-2} \text{ m/s}^2$.

(c) a' is the same with R replaced by R+2m=6378002 m. This gives $v' = 2.553078017 \times 10^2 \text{ m/s}$ $a' = 2.583871249 \times 10^{-2} \text{ m/s}^2$ $a' - a = 8.090000000 \times 10^{-9} \text{ m/s}^2$ This is accurate at most to three places (8.09).

This is repaired by canceling some terms using algebra: $a = v^2/r = (2\pi/T)^2 R \cos 40$

a' = same with R replaced by R+2m

hence

 $a' - a = (2\pi/T)^2 (2m)\cos 40 = 8.102447279 \times 10^{-9} \text{ m/s}^2$

This is exact to the number of places shown. Can see that the first approach was only accurate to two decimal places.

Problem 2

Python code

```
# HW2, problem 3.
# Approximate the derivative of f(x)=exp(2x) at x=3
# using the FS and CS approximations. Plot the results.
# MDJ 9/13/05
from scipy import *
import Gnuplot, Gnuplot. funcutils
g = Gnuplot.Gnuplot(debug=0)
g('set terminal aqua')
# Array of step sizes h
h=10.**arange(-20,0)
# Calculate for x=3
x = 3.
exact = 2.*exp(2.*x)
print "exact derivative = ",exact
# FS estimate and its absolute error.
fs=(exp(2.*(x+h))-exp(2.*x))/h
print "fs approximations=n",fs
error_fs=abs(fs-exact)
# CS estimate and its absolute error.
cs=(exp(2.*(x+h))-exp(2.*(x-h)))/(2.*h)
print "cs approximations=\n",cs
error_cs=abs(cs-exact)
# Take logs to make log-log plot.
error_fs=log10(error_fs)
error_cs=log10(error_cs)
h = log 10(h)
# Do the plotting with Gnuplot
d1 = Gnuplot.Data(h,error_fs,title='FS')
d2 = Gnuplot.Data(h,error_cs,title='CS')
g.title("Errors in approximate derivatives")
g('set data style linespoints')
g.xlabel("Log(step size)")
g.ylabel("Log10(error)")
g.plot(d1,d2)
```

Python output:

exact derivative = 806.857586985						
fs approximations=						
[(). 0.	0. 0.	0.			
	738.96444519	824.22957348	806.60811363	806.94917415	806.85822468	
	806.85765624	806.85765624	806.85759372	806.85766648	806.85839396	
	806.86565562	806.93827813	807.66498275	814.98022339	893.20247601]	
cs approximations=						
[(). 0.	0. 0.	0.			
	710.54273576	824.22957348	806.32389654	806.92075244	806.85822468	
	806.85765624	806.85765624	806.85758235	806.85758576	806.85758709	
	806.85758704	806.85759237	806.85812489	806.91137857	812.24740592]	

Observations:

- (a) CS is more accurate than FS
- (b) There are two regions for larger values of h the errors get smaller as h decreases; but eventually for too small h the error begins to grow.
- (c) The slopes for larger h are close to 1 for FS and 2 for CS. That is because the FS error goes as h¹ and the CS error goes as h². The error in this larger-h region is algorithmic error (also known as step-size or truncation error).
- (d) The error in the smaller-h region is round-off error. Notice in the output that for very small h the FS and CS approximations go to zero (which is nonsense). That is because for very small h when the computer calculates f(x+h) it returns a value equal to what it computes for f(x).

Problems 3 and 4

Python code:

```
# Homework 2 problems 3 and 4
# MDJ 9/13/05
from scipy import *
t=array((0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1.0,1.1,1.2,1.3,1.4,1.5))
f=array((1.,0.99959219,0.9983691,0.99633173,0.99348174,
              0.98982144,0.98535384,0.98008256,0.97401192,
              0.96714685, 0.95949297, 0.95105652, 0.94184436,
              0.93186403,0.92112365,0.909632))
n = len(t)
tau = t[1] - t[0]
print "Problem 3 - using CS approximation"
m = 2
deriv = (f[m+1]-f[m-1]) / (2.*tau)
print "deriv = ",deriv
print
print "Problem 4 - as stated"
sum = 0.
for j in arange(0,n):
       sum = sum + f[j]
sum = sum * tau
print "integral = ",sum
print
print "Problem 4 - using trapezoidal approximation"
sum = 0.5*(f[0]+f[n-1])
for j in arange(1,n-1):
       sum = sum + f[j]
sum = sum * tau
print "integral = ",sum
```

Output:

```
Problem 3 - using CS approximation
deriv = -0.0163023
Problem 4 - as stated
integral = 1.54992049
Problem 4 - using trapezoidal approximation
integral = 1.45443889
```

The function was f(t) = cos(2t/7).

The correct answers are f'(0.2)=-0.016318 and (for the integral from t=0 to 1.5) integral=1.454; the trapezoidal approximation does better.

Problem 5:

Python code

Homework 2 Problem 5 # MDJ 9/13/05
from scipy import *
def f(x): return x**2 + 1
print "Problem 5 part (a)" for n in arange(6): print n,f(n)
print print "Problem 5 part (b)" a = arange(1,8) print f(a)

Output

Problem 5 part (a) 0 1 1 2
25
4 17
5.26
Problem 5 part (b) [2 5 10 17 26 37 50]

Part (b) illustrates an interesting Python feature: it was not necessary to choose the type of the function's input argument. When the input was an array, the function calculated $x^{**}2+1$ for an array – that is, element by element.